首页> 外文OA文献 >Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections
【2h】

Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections

机译:自动配准多模式显微镜图像,用于前列腺组织切片的综合分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Methods Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Results Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%). The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. Conclusions The proposed method is both reliable and fast and therefore well suited for automatic segmentation and analysis of specific areas of interest, combining morphological information with protein expression data from three consecutive tissue sections. Finally, the performance of the algorithm seems to be largely unaffected by the Gleason grade of the prostate tissue samples examined, at least up to Gleason score 7.
机译:背景技术前列腺癌是癌症相关死亡的主要原因之一。为了诊断,预测疾病的结果以及评估潜在的新生物标志物,病理学家和研究人员常规地分析组织学样本。形态和分子信息可以通过以多重方式排列显微组织图像来整合。此过程通常很耗时,并且会导致用户内部和用户之间的差异。这项研究的目的是研究使用现代图像分析方法自动对齐来自前列腺组织标本的不同染色的相邻石蜡切片的显微图像的可行性。方法对取自活检或前列腺癌根治术的组织样品进行切片,并用苏木精和曙红(H&E),p63和AMACR的免疫组织化学或雄激素受体(AR)的时间分辨荧光(TRF)染色。对齐图像对以允许平移,旋转和缩放。通过使用比例尺不变图像变换(SIFT)首先检测两个图像中的界标,然后通过众所周知的RANSAC协议查找点对应关系,最后通过Procrustes fit对齐,自动执行配准。使用文本中定义的视觉和定量标准评估注册结果。结果进行了三个实验。首先,在88例病例中有85例(96.6%)成功地对H&E和p63 / AMACR染色的连续组织切片图像进行了对准。在高度侵袭性癌症(格里森评分≥8)的13个核心中,有3个发生了故障。其次,TRF和H&E图像对在106例病例中的103例中正确对齐(97%)。第三个实验考虑了来自4个切片的具有相同染色(H&E)的图像对的对齐。对齐成功率从相邻部分的93.8%下降到最远部分的22%。结论所提出的方法既可靠又快速,因此非常适合将形态学信息与来自三个连续组织切片的蛋白质表达数据相结合的自动分割和感兴趣的特定区域的分析。最后,算法的性能似乎不受所检查的前列腺组织样品的格里森等级的影响,至少不超过格里森得分7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号